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RELAX is a flexible program for the quantitative analysis of for evaluating NOE data is the complete-relaxation-matrix
NOESY spectra. It allows the simultaneous application of different analysis. In this approach, all dipolar interacting spins are
models describing the internal and overall motion of the molecule treated as a network and the volumes of the NOE cross
under investigation for individual spin pairs or groups of spins. A peaks are calculated by exponentiating the matrix of cross-
correction for anisotropy effects due to the deviation of the mole-

relaxation rates—the relaxation matrix. This approach not
cule from a spherical shape is calculated automatically from the

only allows the calculation of NOE volumes for long mixingtrial structure. The program can deal with completely relaxed
times but additionally makes it possible to describe the inter-spectra as well as spectra recorded with a short relaxation delay.
nal motions of the molecule in a detailed way.An execution-time-controlled splitting of the relaxation matrix re-

During the past years, a number of groups have presentedduces the computation time significantly without any loss of accu-
racy. This is especially important for large molecules or medium computer programs [CORMA (4), BCKCALC (5), X-PLOR
distance cutoffs. q 1997 Academic Press (6), and BIRDER (7)] that are capable of calculating NOESY

cross-peak volumes by complete-relaxation-matrix analysis.
The first calculations have been performed mostly for theo-

INTRODUCTION retical reasons (8, 9). Other programs, such as MAR-
DIGRAS (10, 11), NO2DI (12), and a program from Kim

The quantitative analysis of nuclear Overhauser effect and Reid (13), use relaxation-matrix analysis to calculate
spectra allows the determination of interatomic distances. In interatomic distances from NOESY cross-peak volumes. In
order to obtain a highly resolved NMR structure, a large IRMA (14, 15) and DINOSAUR (16), a relaxation-matrix
number of distance estimates with high accuracy is essential analysis is applied iteratively with molecular-dynamics cal-
(1). Commonly distances are calculated using the isolated- culations for the refinement of the structure. The direct com-
spin-pair approximation (ISPA). For short mixing times it parison of simulated and experimental NOE values allows
relates the cross-peak volumes Vij to the distances rij between the determination of a measure for the quality of a structure
two atoms i and j by (2) analogous to the X-ray R factor which is in principle superior

to the often-applied rmsd analysis (17, 18) of the set of struc-
Vij Å ar06

ij . [1] tures obtained. Such a measure can be used to replace dis-
tance constraints in molecular-dynamics or distance-geome-

Usually, the constant a is calculated from the cross-peak try calculations (19–21) by incorporating it as a pseudo-
volume of some spins with known distance. For longer mix- energy. A current development is the use of calculated
ing times, distances are often calculated from the initial slope NOESY cross peaks for the automatic search and assignment
of the build-up curve of the NOE (3). The validity of Eq. of experimental peaks, as done in the programs ASNO (22)
[1] is based on three fundamental assumptions: spin pairs and NOAH (23).
can be treated as isolated, the molecule is rigid, and the The programs mentioned above have different restrictions
rotational diffusion of the molecule is isotropic. This approx- and limitations. Some (BIRDER) treat the molecule under
imation was sufficient in the beginning of the structure deter- investigation as rigid. Others allow the description of aro-
mination of macromolecules from NMR data. However, with matic ring flips and the rotation of methyl groups by distance
the availability of sensitive high-field spectrometers and the averaging (X-PLOR) or discrete jump models (IRMA) in-
accompanying general improvement of spectral quality, Eq. cluding a free rotor model (MARDIGRAS). In X-PLOR,
[1] is a too-crude approximation. A much superior method internal motions can additionally be described according to

the so-called model-free approach presented by Lipari and
Szabo (24, 25). Like BIRDER, a recent version of CORMA* To whom correspondence should be addressed.
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178 GÖRLER AND KALBITZER

is capable of calculating NOE cross peaks with a finite relax- where D is the dynamic matrix given by D Å NrR* / K.
The kinetic matrix K describes conformational or chemicalation delay. A program called SYMM (26) can be applied

to remove the effects of a finite relaxation delay from experi- exchange (21) and R* is the symmetrized relaxation matrix
(29–31). The diagonal matrix N contains the numbers ofmental NOE cross-peak volumes. BIRDER can additionally

treat the molecule as a rigid top with two different correlation group members ni of each group i as its elements. For dipolar
homonuclear (gi Å gj) relaxation and spin I Å 1

2, the auto-times for the rotation about its symmetry axis and the orthog-
onal rotation. To our knowledge, X-PLOR so far is the only relaxation rates R*ii and the cross-relaxation rates R*ij are given
program which allows restricting the calculation to a subset by
of cross peaks, which is much faster. Most of the programs
use matrix diagonalization to calculate NOESY cross peaks R*ii Å q(1 0 1/ni)[3J 1

ii(v) / 12J 2
ii(2v)]

while BCKCALC, for example, applies numerical integra-
/ q ∑

jxi

nj/ni[J
0
ij(0) / 3J 1

ij(v) / 6J 2
ij(2v)],tion.

Because of the growing importance of relaxation-matrix
analysis, we present here a newly developed set of routines R *ij Å q[6J 2

ij(2v) 0 J 0
ij(0)]. [3]

that allow the simulation of NOE cross peaks in a fast,
flexible, and easy-to-handle way. They make it possible to Jn

ij (n Å 0, 1, 2) are the spectral densities for n-quantum
calculate cross peaks by the application of a dynamic model transitions characterizing the motion of spins i and j, and q
which can be adapted to the molecule under investigation Å (1/10)g2

ig
2
j \

2(m0/4p)2 is the dipolar interaction constant.
by combining various spectral densities. Calculations can be In the current version of RELAX, chemical-exchange effects
performed assuming a finite or infinite relaxation delay. The are neglected. Under this simplification Eq. [2] has the solu-
computation can be restricted to any subset of cross peaks. tion
As a first basic application of these routines, the program
RELAX is presented. DMz(t) Å DMz(0)exp(0tNrR*). [4]

MATERIAL AND METHODS
The NOE cross-peak volumes V(t) are (29, 30)

For best portability, the program has been written in
ANSI-C. Currently, full-featured stand-alone versions of Vij(t) Å aMz, j(0)[exp(0tNrR*)]ij [5]
RELAX exist for 80 x 86, Bruker Aspect 1, SGI, and Convex
C220. They are available from the authors upon request. For with an arbitrary scaling factor a. Usually it is assumed that
comfortable display of the results a simplified version of the system is completely relaxed prior to the first pulse of
this program has already been implemented in the program the NOESY sequence. With Mz,j(0) Å nj/a, the normalized
AURELIA (27), which is available from Bruker (Karlsruhe). symmetric matrix of NOE intensities V(t) is

Calculations have been performed for the 74-residue pro-
tein tendamistat from Streptomyces tendae, for the 87-resi- V(t) Å N1/2

rA(t)rN1/2 [6]
due protein HPr from Staphylococcus aureus, and for frag-
ments of actin from rabbit skeletal muscle with sizes increas- with
ing in steps of 25 residues from 25 up to 372. The results
presented in this paper were obtained on a SGI Indigo2

A(t) Å exp(0tN1/2
rR*rN1/2). [7]

Workstation (MIPS R4400, 200 MHz, 64 Mbyte RAM).

However, fully relaxed NOESY spectra are hardly everTHEORETICAL CONSIDERATIONS
recorded. A much better signal-to-noise ratio can be

In the following, those results of the theory of the relax- achieved if more experiments are accumulated with a short-
ation-matrix formalism which are the basis of the algorithms ened relaxation delay td which is also used for water suppres-
presented in this paper will be recalled. It is assumed that sion by selective saturation. In this case, the longitudinal
spins that are magnetically equivalent are combined into magnetization Mz, j recovers only partly during the recovery
groups i, j, . . . with the corresponding number of group time tr and is no longer proportional to nj prior to the first
members ni, nj, . . . . The evolution of the deviation DMz Å pulse. The spectral quality can be improved and t1-dependent
Mz 0 M0 of the longitudinal magnetization of the equilib- echo formation can be suppressed by destroying all longitu-
rium magnetization M0 in an NOESY experiment can be dinal and transverse magnetization by the application of two
described by the generalized Solomon equation (28) orthogonal spin-lock pulses prior to the delay td. Since all

magnetization is destroyed by the B1-field inhomogeneity,
it can be assumed that Mz(0) Å 0 after the application ofd

dt
DMz(t) Å 0DDMz(t), [2]

the spin-lock pulses and recovers only during the relaxation
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179COMPLETE-RELAXATION-MATRIX CALCULATION IN NOESY SPECTRA

delay tr Å td. In the absence of spin-lock pulses, the magneti- with well-defined secondary structure are relatively rigid,
methyl groups or aromatic rings undergo rapid internal mo-zation at the beginning of the mixing time is dependent

on the t1 increment. The two cases, however, are formally tions. The spectral density of the movement of the vector
connecting spins which are involved in such a type of motionequivalent since under ideal conditions Mz(0) Å 0 is fulfilled

just after the 907 detection pulse at t1 Å 0. For the cross- can be described by jump models representing a jump of a
group of spins i between Ni equilibrium sites (34–37). Twopeak volumes only the magnetization at t1, t2Å 0 is important

(as a general property of the Fourier transformation). There- special cases of jumps are easy to treat, for which the formu-
las are given in the most general case of two interactingfore, in the absence of the spin-lock pulses, there is an addi-

tional contribution from the acquisition time tac to the total jumping groups of spins i and j. If the correlation time t1,ij

of the jump motion is much slower than the overall rotationalrecovery time tr (7, 26, 32): tr Å tac / td.
The z magnetization Mz(td) at the beginning of the mixing correlation time tc of the molecule, a slow-jump approxima-

tion can be made and the spectral density results intime (t1, t2 Å 0) can be written as

SLOW_JUMP:
Mz, j(tr) Å

1
a

∑
k

[1 0 exp(0trNrR*)]jknk [8]

Jn
ij(v) Å 1

NiNj
S tc

1 / v2t2
c
D ∑

Ni

mÅ1

∑
Nj

nÅ1

1
r6

imjn

, [12]

and the matrix V(t) takes the form

which is often referred to as r06 averaging. In the case of fastVij(tr, t)
jumps where t1 @ tc, no simple averaging can be applied. InÅ ∑

j,k

[exp(0tNrR*)]ij[1 0 exp(0trNrR*)]jknk [9] this approximation the equation for the spectral density is

FAST_JUMP:or in matrix notation,

Jn
ij(v) Å 1

2N 2
i N

2
j

tc

1 / v2t2
c

V(tr, t) Å N1/2
rA(t)r[A(tr)]N1/2. [10]

Note that the matrix V(tr, t) and the corresponding NOESY ∑
Ni

m,nÅ1

∑
Nj

o,pÅ1

1
r 5

im jnr
5
io jp

[3(rim jnrrio jp)
2 0 r 2

im jnr
2
io jp].spectrum are now asymmetric (7).

[13]Spectral Densities

Equation [3] contains the spectral densities of n-quantum The so-called r03 averaging
transitions Jn

ij(v) of the motion of the vector rij that connects
the nuclei i and j relative to the B0 field. Ideally, the spectral AVERAGE_3:
densities should be obtained from an analysis of this motion
which is generally not known in detail. Fortunately, there

Jn
ij(v) Å 1

N 2
i N

2
j

tc

1 / v2t2
c
Z∑Ni

mÅ1

∑
Nj

nÅ1

1
r3

im jn
Z2

[14]
are some special cases for which analytical expressions for
the spectral-density functions exist. Those which are imple-
mented in RELAX will be presented briefly in the following is only a good approximation for Eq. [13] in the case of the
along with the mnemonic names used in the program group i of spins being far apart from the group j. Although
RELAX. the general application of Eq. [14] for the treatment of fast

In most applications of the relaxation-matrix formalism, jumps is not recommended, it is still offered and might be
the molecule is assumed to be rigid and diffusing isotropi- useful in special cases. The spectral-density function of auto-
cally in the solvent with an overall correlation time tc. This relaxation Jn

ii(v) is given by
case is described by the well-known spectral-density func-
tion (33)

Jn
ii Å

1
r6
mn
F1

4
tc

1 / v2t2
c

/ 3
4

te,ij

1 / v2t2
e,ij
G [15]

RIGID:

for fast as well as for slow jumps, having t01
e,ij Å t01

c / t01
1,ij.Jn

ij(v) Å 1
r6

ij

tc

1 / v2t2
c

. [11]
These jump models can be regarded as methods for the

calculation of the order parameter Sij in the model-free ap-
proach of Lipari and Szabo. In this approach the motions ofThe assumption of a rigid molecule is usually not justified.

While, for example, regions in the backbone of a peptide the molecule are assumed to be a superposition of a slow
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180 GÖRLER AND KALBITZER

overall motion with a correlation time tc and rapid internal molecule from a sphere to its actual shape, keeping the vol-
ume of the molecule constant.motions with correlation times t1,ij and generalized order

parameters Sij which are a measure for their local restriction. To approximate the rotational properties of the given trial
structure, the ellipsoid is chosen to have an equal volumeLipari and Szabo show (24, 25) that in this case
and equal moments of inertia as the molecule under consider-
ation. With this assumption its semiaxes a1, a2, and a3 areLIPARI:
uniquely defined and can be calculated numerically from the
structure. They are later used to calculate the coefficients ofJn

ij(v) Å 1
r6

ij
S S 2

ijtc

1 / v2t2
c

/ (1 0 S 2
ij)te,ij

1 / v2t2
e,ij
D [16]

a correcting polynomial.
The dipolar relaxation of a rigid molecule diffusing aniso-

tropically with three independent rotational-diffusion coef-with t01
e,ij Å t01

c / t01
1,ij. Due to the assumption that t1,ij ! tc

ficients R1, R2, and R3 can be treated according to the theorythe second term in Eq. [16] is often neglected, simplifying
presented by Woessner (39), of which the essentials areEq. [16] to
quoted in the following. In the most general, completely
anisotropic, case the spectral-density function isLIPARI_1:

Jn
ij(v) Å 1

r6
ij

S 2
ijtc

1 / v2t2
c

. [17]
Jn

ij(v) Å 1
2r6

ij

(a0,0 / a1,0 / a0,1m
2
ij / a2,0l

4
ij

Anisotropy Correction / a0,2m
4
ij / a1,1l

2
ijm

2
ij), [19]

By a suitable combination of the spectral densities pre-
sented above, it is possible to set up a detailed model for whereby the coefficients al,m are
the internal and overall motions of the molecule. Such a
model could describe these motions as a superposition of

a0,0 Å TS / 1/6(d1 / d2 0 2d3)TD,a slow overall rotational diffusion of the molecule with a
rotational correlation time tc and fast internal motions which a1,0 Å 6T2 0 3TS 0 (d2 0 d3)TD,
may vary from spin pair to spin pair in the molecule. Usually,

a0,1 Å 6T1 0 3TS 0 (d1 0 d3)TD,it is assumed that this overall diffusion is isotropic. This
implies that the shape of the molecule can be approximated a2,0 Å 3TS 0 1/2(d1 0 2d2 / d3)TD 0 6T2,
by a sphere. Then, the correlation time tc can be estimated

a0,2 Å 3TS 0 1/2(d2 0 2d1 / d3)TD 0 6T1,by applying the Stokes–Einstein relation
a1,1 Å 3TS / (d1 / d2 0 2d3)TD 0 6(T1 / T2 0 T3).

tc Å
MV *h

kT
Å 4phd 3

3kT
, [18] [20]

The di and Ti for i√{1, 2, 3, /, 0} are given bywhere h is the viscosity of the solvent, k the Boltzmann
constant, M the molecular mass of the molecule, T the tem-
perature, d the radius of the molecule, and V* the partial

di Å (Ri 0 RU )/
√
RU 2 0 L2,

volume, which can be assumed to have a constant value for
TD Å T/ 0 T0,all globular proteins (38).

Especially for longish molecules such as DNA or coiled–
TS Å T/ / T0,

coiled helices, the assumption of a spherical molecule is not
justified. The motion of a molecule with arbitrary shape can

andbe described by three independent rotational diffusion times
for the rotation among its three main axes of inertia. The ab
initio calculation of these rotational diffusion times from Ti Å ti/(1 / v2t2

i ), [21]
the molecular structure is extremely difficult. However, the
problem can be tackled by a special anisotropy correction

withimplemented in RELAX that can be applied if the overall
shape of the molecule resembles more an ellipsoid than a
sphere. The correction derived in the following is of pure

1/t{ Å 6(RU {
√
RU 2 0 L2)

geometric nature. It corrects for the changes in the relaxation
rates that would arise from a fictitious deformation of the 1/ti Å 3(Ri / RU ). [22]
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181COMPLETE-RELAXATION-MATRIX CALCULATION IN NOESY SPECTRA

The Pi are defined by the elliptical integrals

Pi Å *
`

0

ds

(a2
i / s)

√
(a2

1 / s)(a2
2 / s)(a2

3 / s)
. [26]

In the special case of a sphere with radius d Å a1 Å a2 Å
a3 these equations lead to Eq. [18], allowing one to calculate
an isotropic rotational correlation time tc.

Woessner’s theory can now be used to calculate the
wanted geometric anisotropy correction. Inserting Eq. [18]
into Eq. [25] and using the relation

P1 / P2 / P3 Å 2/(a1a2a3) Å 2/d 3, [27]

one can express the diffusion coefficients Ri of any ellipsoid
with volume 4

3p a1a2a3 Å 4
3p d3 in terms of tc, a1, a2, and a3:

FIG. 1. A correction for the anisotropy of the diffusion can be applied
Ri Å

1
2tc(P1 / P2 / P3)

a2
1P1 / a2

2P2 / a2
3P3 0 a2

i Pi

a2
1 / a2

2 / a2
3 0 a2

i

.in RELAX. The overall shape of the molecule is approximated by an
ellipsoid with equal volume and equal moments of inertia. Correction factors
are calculated which depend only on the direction cosines lij, mij, and nij of [28]
the vector rij connecting two spins i and j with the semiaxes a1, a2, and a3

of the ellipsoid.
These expressions for the rotational-diffusion coefficients

Ri only depend on the ratios of the semiaxes of the ellipsoid.
Inserting Eq. [28] into Eq. [23], it can now be used to calcu-

RV and L2 only depend on the rotational-diffusion coefficients
late the coefficients al,m Eq. [20] of correcting polynomial

Ri: Canis(l
2
ij, m2

ij) Eq. [24]. Although the calculation of al,m is
computationally very expensive, involving the numerical de-

RU Å (R1 / R2 / R3)/3 termination of the tensor of inertia and the numerical integra-
tion of elliptical integrals, it must be performed for everyL2 Å (R1R2 / R1R3 / R2R3)/3. [23]
trial structure only once. The factors correcting for the an-
isotropy can be computed for every spin pair simply byThe ratio of the isotropic Eq. [11] to the anisotropic Eq.
calculating the direction cosines lij and mij and substituting[19] spectral-density function depends only on the squares
them in Eq. [24]. Thus the anisotropy correction has onlyof the direction cosines lij and mij of the vector rij, which
minimal influence on the overall computation time.connects a pair of spins i and j with the semiaxes a1 and a2

of the ellipsoid (Fig. 1). It is independent of the spatial
separation of i and j rij. Thus it is possible to express this PRACTICAL IMPLEMENTATION
ratio as a polynomial of second degree in l 2

ij and m2
ij

The SPT File
Canis(l

2
ij, m2

ij) Å Jn
aniso(v)/Jn

iso(v) To calculate volumes of NOE cross peaks, it is necessary
to know the three-dimensional structure of the molecule.

Å 1 / t2
cv

2

2tc

(a0,0 / a1,0 l 2
ij / a0,1m

2
ij / a2,0l

4
ij This information is supplied to RELAX by a pdb file which

contains the Cartesian coordinates of all atoms. To describe
/ a0,2m

4
ij / a1,1l

2
ijm

2
ij) [24] the additional information that is related to the NMR-specific

parameters a new file type—the spt file—has been devel-
with the coefficients al,m given by Eq. [20]. oped and defined (Fig. 2). It consists of three sections de-

In general the rotational-diffusion coefficients Ri are hard scribing the parameters of the applied dynamic model, reso-
to determine but if, as assumed, the overall shape of the nance line assignments, and, if available, experimental peak
molecule resembles an ellipsoid with the semiaxes a1, a2, volumes. The spt file can be set up manually by the aid of
and a3, Stokes hydrodynamic theory yields any spread-sheet program, or the program AURELIA (27)

can be used to generate a raw frame of an spt file which
should be edited by the user to best suit the properties ofRi Å

kT

16ph
3(a2

1P1 / a2
2P2 / a2

3P3 0 a2
i Pi)

a2
1 / a2

2 / a2
3 0 a2

i

. [25]
the molecule under investigation.
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182 GÖRLER AND KALBITZER

FIG. 2. A sample extract of an spt file is shown. The file consists of three sections. In the first section, classes of protons are defined along with
their properties which describe the dynamics of the molecule. In the second section, all groups of protons are listed and assigned to a class as well as,
optionally, to a ppm value. Equivalent atoms can be combined into groups. In the optional third section, experimental volumes can be supplied for a
comparison with simulated cross peaks or for further calculations.

To reduce the calculation time, magnetically equivalent classes a set of properties is defined which is used to set up
the relaxation matrix. These are the type of spectral densityspins can be combined to groups. In order to achieve maxi-

mum flexibility, a classification concept is applied which that is to be applied, the overall correlation time tc, the order
parameter S, and the internal correlation time t1. Addition-allows the assignment of each group to a user-defined class.

In the first section of the spt file for all classes and pairs of ally, an occupation number can be specified which allows
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183COMPLETE-RELAXATION-MATRIX CALCULATION IN NOESY SPECTRA

one, for example, to take into account that amide protons
have a reduced occupancy if the solvent contains D2O. RE-
LAX allows the simultaneous application of the spectral-
density functions described above. To improve readability
the symbolic names RIGID, SLOW_JUMP, FAST_JUMP,
AVERAGE_3, LIPARI, and LIPARI_1 are used. The anisot-
ropy correction can be activated by the keyword ANIS. In
the second section all groups of spins are listed that would
be visible in a corresponding experimental spectrum. If
known, a ppm value can be assigned to a group of spins. If
such an assignment is not known stereospecifically, this can
be indicated by replacing the atom index number by ‘‘X’’
or ‘‘Y’’ in the atom name. An asterisk can be used to indicate
atoms that should be combined into a group. The choice of
the spectral-density function defines how their coordinates
are to be averaged. If back-calculated volumes should be
quantitatively compared in some way with experimental data
it is possible to give experimental cross-peak volumes in an
optional third section. These peaks can be either assigned
or unassigned and can be entered for multiple mixing times.
If required, specified peaks can be used to scale the simulated
to the experimental data.

Computation-Time-Controlled Submatrix Sizes

The calculation of NOE volumes involves the solution of
a matrix-exponential function which is a problem with order
of complexity N 3 (40). Fortunately, relaxation rates between
nuclei that are far apart are zero in very good approximation.
Therefore, only such cross-peak volumes Vij between spin i
and spin j need to be calculated for which i and j are nearer
than an outer cutoff value cr. Furthermore, the fact that the

FIG. 4. The calculation of the matrix-exponential function of the relax-
ation matrix R* is performed by exponentiating small submatrices of R*. If
it reduces the overall computation time, submatrices are combined and
exponentiated together. To determine the optimal composition of these
submatrices, the computation time is estimated for various arrangements
prior to the actual calculations.

FIG. 3. Experimentally determined computation times (1) needed for
the calculation of the exponential of a matrix of size N are shown. They relaxation matrix is sparse makes it possible to neglect, when
can be approximated perfectly by a polynomial of third degree, p(N) Å

calculating the cross peak Vij, all other spins whose distance0.41 0 0.0043N / 0.0028N 2 / 1.83 1 1005 N 3. This polynomial can be
from i and j is greater than an inner cutoff value cu. Thusused to predict computation times without actually performing the calcula-

tion. The data are obtained on a Bruker Aspect 1 workstation. Vij can be calculated by only exponentiating R*ij, a submatrix
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184 GÖRLER AND KALBITZER

FIG. 5. The rmsd values of the average relative deviations of calculations performed with the inner cutoff values cu Å (5, 6, 7, and 8 Å) from
calculations performed with cu Å 9 Å are shown. As correlation times, tc Å [42 ps (j), 76 ps (l), 240 ps (m), 760 ps (L), and 2.4 ns (h)] were chosen.
The mixing time was set to t Å (50, 110, 220, and 470 ms and 1 s). Only in the worst case of t Å 1 s and cu Å 5 Å does the rmsd value exceed 1%.
This peak value of 1.32% corresponds to average errors in the distances of 0.22%.

of R* that only contains relaxation rates between spins that mined computation times p(N) for different submatrix sizes
N. The actual coefficients vary little from one computerare neighbors of either i or j. Because of the N3 dependence

of the matrix-diagonalization time, calculating the exponen- system to another, and the general behavior of the polyno-
mial does not change. Therefore, their choice is not criticaltials of separate submatrices for all peaks can be computa-

tionally more efficient than exponentiating the relaxation for a minimal computation time.
The algorithm implemented in RELAX is explained bymatrix as a whole. It is possible that a pair of spins k and l

have some spatial neighbors in common with spins i and j. Fig. 4. First the relaxation matrix and a list of all peaks
volumes that are to be calculated are set up. In a bit matrixIn such a case the overlap of the submatrices R*ij and R*kl can

make it more efficient to combine them to R*ijkl and calculate BM, a bit set at position (i, j) states that the distance of at
least one member of group i from one member of group jVij and Vkl by exponentiating R*ijkl . Thus it is not optimal to

exponentiate submatrices for all peaks separately. is smaller than the cutoff value cu. The binary union of row
i and row j of BM represents the set of spins that must beIn RELAX, a dynamic determination of submatrix sizes

is applied to minimize computation time. It uses the fact, regarded when calculating the cross peak Vij. If, for example,
the next uncalculated cross peak is Vkl, a calculation of bothmentioned above, that the dependence of the diagonalization

time of a matrix on its size can be approximated by a polyno- peaks by exponentiating a common submatrix would involve
all spins that are represented by the union of the rows i, j,mial of third degree. If its coefficients are known, this poly-

nomial allows the estimation of the computational effort k, and l of BM. This larger submatrix allows in addition to
Vij and Vkl, the calculation of Vik, Vil, Vjk, and Vjl. Dependingfor the diagonalization of any possible submatrix without

actually computing it. The coefficients can be obtained, as on which of these peaks still are to be calculated, it can be
decided by the knowledge of p(N) which combination re-shown in Fig. 3, by a numerical fit to experimentally deter-
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FIG. 6. The maximum relative deviations are shown. Values were calculated with the same parameters and are displayed by the same symbols as
in Fig. 5. Only in two extreme cases do the maximum relative deviations exceed 10%.

quires less computation time per peak. If it is favorable to RESULTS AND DISCUSSION
calculate both peaks separately the calculation is performed
immediately; otherwise it is postponed and a check is made The algorithm implemented in RELAX depends on two
whether even more peaks can be calculated together. different cutoff values: the user-defined outer cutoff value

When a fully relaxed spectrum is simulated, the use of cr determines the distance range which is of interest for the
submatrices has an additional advantage: if only a limited user, and the inner cutoff value cu, which is invisible to the
number of cross peaks are of actual interest, only those user, determines the minimal distance range in the bonds
submatrices containing these peaks need to be diagonalized. of which neighboring spins are taken into account as spin-

diffusion pathways when calculating cross-peak volumes.This can further speed the calculation enormously.

TABLE 1
Execution Times for the Calculation of n Cross Peaks with an Outer Cutoff Parameter cr Å 5.0 Å Are Shown

for Peptides with Different Numbers of Residues nres and Sizes of the Relaxation Matrix N

nres 25 50 75 100 125 150 175 200 225 250 275 300 325 350 372

n 1088 2706 4921 6509 9073 10,961 14,487 16,280 16,431 18,108 20,544 22,708 24,912 27,849 29,791
N 176 356 533 670 909 1,070 1,225 1,412 1,592 1,751 1,926 2,107 2,276 2,469 2,635
Whole 1.7 s 23.0 s 97 s 217 s 651 s 1,096 s 1,837 s 2,796 s 4,205 s 5,712 s 8,031 s 10,911 s 13,996 s 34,113 s 43,377 s
RELAX 1.0 s 4.3 s 19 s 41 s 51 s 67 s 82 s 90 s 116 s 126 s 133 s 173 s 182 s 219 s 235 s

Note. The rows are labeled as in Table 2.
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FIG. 7. The distribution of deviations in the worst-case calculation. It is evident that large deviations occur only for very small cross-peak volumes.
It cannot be decided whether this is due to the algorithm of RELAX or to a general numerical instability of the QL algorithm used for matrix
diagonalization.

To investigate the dependence of the numerical stability of
the algorithm of RELAX on the inner cutoff value cu, calcu-
lations have been performed for the trial structure tendamis-
tat from Streptomyces tendae. The spectrometer frequency
was set to 500 MHz. A dynamic model was set up applying
the spectral-density function FAST_JUMP (13) for methyl
groups, SLOW_JUMP (37) for ring protons, and RIGID (11)
for all other protons. Using Eq. [18], an overall rotational
correlation time tc of 2.4 ns was estimated for the molecule
in water at 298 K. For all combinations of the correlation
times tc Å (24, 76, 240, and 760 ps and 2.4 ns), correspond-
ing to vtc Å (0.075, 0.24, 0.75, 2.4, and 7.5) and mixing
times tm Å (50, 110, 220, and 470 ms and 1 s), the 3631
NOE cross-peak volumes that arise from spin pairs that are
not further apart than the outer cutoff value cr of 5 Å have
been calculated. Calculations have been performed for dif-
ferent inner cutoff values cu Å (5, 6, 7, 8, and 9 Å). The
cross-peak volumes obtained with cu Å (5, 6, 7, and 8 Å)FIG. 8. The dependence of computation time on the outer cutoff value

cr. The bend in the curves at 4.5 Å results from the fact that the inner cutoff were divided by the values obtained with cu Å 9 Å and the
value cu is kept constant for cr õ 4.5 Å, while it is set to cu Å cr for larger quotients have been analyzed statistically. The rmsd devia-
values of cr. The lines show values obtained by exponentiating the matrix tions of these quotients from 1 are shown in Fig. 5; only inas a whole (l), by setting up separate matrices for every peak (n), by

the worst case of cu Å 5 Å, tc Å 2.4 ns, and t Å 1 s doescalculating all peaks that have one spin in common (s), and by RELAX
(j). the rmsd value s exceed 1%. This corresponds to neglectable
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TABLE 2
Execution Times for the Computation of n Cross Peaks Are Shown for Different Strategies

of Submatrix Construction in Dependence of the Outer Cutoff Parameters cr

cr 2.5 Å 3.0 Å 3.5 Å 4.0 Å 4.5 Å 5.0 Å 5.5 Å 6.0 Å
n 454 856 1186 1590 2230 3163 4055 5016

Whole 41.0 s 41.0 s 41.0 s 41.0 s 41.0 s 41.0 s 41.0 s 41.0 s
Single 2.9 s 4.8 s 6.7 s 9.2 s 13.1 s 39.7 s 90.4 s 192.1 s
Spins 3.0 s 4.9 s 6.3 s 8.6 s 12.7 s 33.4 s 72.0 s 118.0 s
RELAX 2.4 s 3.2 s 3.7 s 4.7 s 6.6 s 15.9 s 31.6 s 58.0 s

Note. The 74-residue peptide tendamistat served as a trial structure. The values listed under ‘‘whole’’ were obtained by diagonalizing the relaxation
matrix as a whole ‘‘Single’’ represents times that were obtained when diagonalizing an individual submatrix for each peak volume calculated. The
execution times labeled ‘‘spins’’ were obtained when calculating all peak volumes that have the first spin in common by exponentiating a common
submatrix. In the last row, calculation times that were obtained by the computation-time-controlled algorithm of RELAX are listed.

rmsd errors in the distances of less than 0.2%. Figure 6 Fig. 8 and Table 2. In addition to the reduction of CPU time
obtained by the introduction of submatrices, the computa-shows the maximum deviations of the quotients from 1. For

cu Å 5 Å, tc Å 76 ps, and t Å 1 s, a maximum relative tion-time control makes the calculations uniformly another
50% faster than they are with other strategies of submatrixdeviation of 22% was found. As shown in Fig. 7, this large

deviation occurs for a very small cross-peak volume. This construction.
In summary, RELAX represents a very flexible and com-deviation of small values (which would still be tolerable for

structure calculations) is probably not due to the small size putationally efficient program, which is suitable for the inter-
active evaluation of NOESY spectra of large molecules onof the inner cutoff value but represents rounding errors of

the numerical diagonalization. However, a mixing time of 1 the basis of the full-relaxation-matrix formalism.
s is not a realistic scenario since the NOE enhancements are
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the use of submatrices. Possible numerical problems caused ven/London, 1992.
by the large matrix sizes have been neglected. As shown in 7. L. Zhu and B. R. Reid, J. Magn. Reson. B 106, 227 (1995).
Table 1, the use of submatrices speeds up the calculation 8. J. W. Keepers and T. L. James, J. Magn. Reson. 57, 404 (1984).
drastically. For much larger structures, it can be expected 9. S. Shibata and K. Akasaka, Magn. Reson. Chem. 28, 129 (1990).
that the computation time per peak of RELAX is independent 10. B. A. Borgias and T. L. James, J. Magn. Reson. 87, 475 (1990).
of the size of the structure, while exponentiating the relax-

11. H. Liu, D. L. Banville, V. J. Basus, and T. L. James, J. Magn. Reson.
ation matrix as a whole becomes almost untractable. B 107, 51 (1995).

The influence of the computation-time control imple- 12. F. J. M. v. d. Veen, M. J. J. Blommers, R. E. Schouten, and C. W.
mented in RELAX has been investigated by performing cal- Hilbers, J. Magn. Reson. 94, 140 (1991).
culations with different strategies of submatrix construction: 13. S.-G. Kim and B. R. Reid, J. Magn. Reson. 100, 382 (1992).
without any submatrices, with individual submatrices for 14. R. Boelens, T. M. G. Koning, G. A. van der Marel, J. H. van Boom,
every cross peak, combining those submatrices that have and R. Kaptein, J. Magn. Reson. 82, 290 (1989).
the first spin in common, and with the computation-time- 15. A. M. J. J. Bonvin, J. A. C. Rullmann, R. M. J. N. Lamerichs, R.

Boelens, and R. Kaptein, Proteins 15, 385 (1993).controlled algorithm of RELAX. The results are shown in

AID JMR 1033 / 6j14$$$185 12-16-96 19:43:15 maga
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